Identification and characterization of assembly proteins of CS5 pili from enterotoxigenic Escherichia coli.
نویسندگان
چکیده
This study investigated the role of three genes comprising part of the operon which encodes CS5 pili from enterotoxigenic Escherichia coli. In-frame gene deletions were constructed, and the effects on biogenesis of the pili were examined. A deletion in csfB abolished CsfA major subunit accumulation in the periplasm, which could be restored by trans-complementation with a complete copy of the csfB gene. Localization studies using an antibody against CsfB showed that this protein was periplasmically located, and thus CsfB is likely to function as the specific chaperone for CsfA. An in-frame deletion mutation in the csfE gene resulted in pili approximately three times longer than those of the wild-type strain, thereby indicating a role for CsfE in pilus length regulation. Localization studies using an antibody generated against CsfE showed low-level CsfE accumulation in the outer membranes. Modulation of csfE expression in trans did not reduce the mean length of the pilus below that of the wild type, which indicated that CsfE is not rate-limiting for termination of pilus assembly. Interestingly, a deletion in the csfF gene also resulted in an elongated pilus morphology identical to that of the csfE deletion strain. However, unlike CsfE, CsfF was shown to be rate-limiting for termination of assembly, since overexpression of CsfF in a csfF deletion strain resulted in a significant decrease in the mean length of the pilus compared to that of the wild type. When the same construct was introduced into the wild-type strain, pilus expression was abolished. Since CsfF bears significant homology to the proposed CsfB chaperone, CsfF was predicted to act as the specific chaperone for CsfE. A double deletion in the csfB and csfF genes was shown to abolish the periplasmic accumulation of both CsfA and CsfD pilins, which could be restored individually only when the strain was trans-complemented with a wild-type copy of csfB or csfF, respectively. Therefore, CsfF may chaperone not only CsfE but also CsfD. A model for CS5 biogenesis is also proposed based on these and previous observations.
منابع مشابه
CS5 pilus biosynthesis genes from enterotoxigenic Escherichia coli O115:H40.
We have sequenced the entire region of DNA required for the biosynthesis of CS5 pili from enterotoxigenic Escherichia coli O115:H40 downstream of the major subunit gene, designated csfA (for coli surface factor five A). Five more open reading frames (ORFs) (csfB, csfC, csfE, csfF, and csfD) which are transcribed in the same direction as the major subunit and are flanked by a number of insertion...
متن کاملProduction, Purification and Characterization of Chicken Egg Yolk Monoclonal Antibody Against Colonization factor antigen -1 of Enterotoxigenic Escherichia coli Causing Diarrhea
Enterotoxigenic Escherichia coli (ETEC) causes diarrhea in both humans and animals. The contaminated food and water are the most common vehicles for ETEC infection. The colonization factor antigen (CFA-1) is a fimbriae protein that promotes adherence of the ETEC strain to the epithelium of the small intestine of the host. In this study IgY proteins were produced against the CFA-1 of ETEC in imm...
متن کاملEnterotoxigenic Escherichia coli infection induces tight junction proteins expression in mice
Enterotoxigenic Escherichia coli (ETEC) causes diarrhea in travelers, young children and piglets, but the precise pathogenesis of ETEC induced diarrhea is not fully known. Recent investigations have shown that tight junction (TJ) proteins and aquaporin 3 (AQP 3) are contributing factors in bacterial diarrhea. In this study, using immunoblotting and immunohistochemistry analyses, we found that E...
متن کاملCooB plays a chaperone-like role for the proteins involved in formation of CS1 pili of enterotoxigenic Escherichia coli.
CS1 pili serve as the prototype of a class of filamentous appendages found on the surface of strains of enterotoxigenic Escherichia coli. The four genes needed to synthesize functional CS1 pili in E. coli K12 are: cooA, which encodes the major pilin protein; cooD, which encodes a minor pilin protein found at the tip of the structure; cooC, which encodes a protein found in the outer membrane of ...
متن کاملExpression of Recombinant Protein B Subunit Pili from Vibrio Cholera
Background & Aims: Vibrio cholerae is a gram-negative bacterial pathogen that causes cholera disease. Following ingestion by a host and entry into the upper intestine, V. cholera colonizes and begins to emit enterotoxin. One of the most pathogenic factors of Vibrio cholera is toxin-coregulated pili (TCP). ToxinCoregulated pili is as the primary factor requiered for the colonization and insisten...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 184 4 شماره
صفحات -
تاریخ انتشار 2002